Oral Cancer Screening Technology Makes Big Impact on Underserved Community

Story courtesy of Ethan Perez, UCI Beall Applied Innovation

Oral health took the main stage at a recent event at Concorde College celebrating the community partnership between the Concorde College of Dental Hygiene and Dr. Petra Wilder-Smith and her team from UC Irvine Beckman Laser Institute & Medical Clinic (BLIMC).

Among the guests were Robynn Zender, community health research representative at the UCI Institute for Clinical and Translational Science (ICTS); Dr. Wilder-Smith, director of dentistry at UCI BLIMC and professor of surgery at the UCI School of Medicine; former Sen. Janet Nguyen of the 34th district, who regularly supports health clinics hosted by Concorde College; and Dr. Arezou Goshtasbi, director of dental hygiene at Concorde College.

Held at the Garden Grove campus, the collaboration was part of a grant funded by the ICTS with which Wilder-Smith and her team developed a nonsurgical approach to identify oral cancer risk and progression in underserved populations. To achieve this, Wilder-Smith and team used advanced imaging technologies and leveraged the students and facilities at Concorde College to provide free oral cancer screenings to patients at the college’s health clinics.

In addition to screening thousands of patients and identifying those with or at high risk of developing oral cancer, Concorde College has – as a result of this collaboration – expanded its oral cancer curriculum to better prepare the next generation of hygienists for recognizing patients with oral cancer or pre-oral cancer.

“The partnership gave our students the opportunity to be more engaged in research and the importance of collaborating with other health care providers,” said Cherie Wink, instructor of dental hygiene at Concorde College and colleague of Wilder-Smith. “It was a great opportunity to be part of something that could potentially save lives.”

Wilder-Smith, who has made a career of using optics and photonics technologies to improve oral health and who has several patents to her name through UCI Beall Applied Innovation, praised the partnership’s role in helping pre-dental students at UCI.

“Working with Concorde has really added to the pre-dental experience for our students,” said Wilder-Smith. “We don’t have a dental school at UCI so the pre-dental students have to find their own way to make connections to clinical dentistry. Concorde works together with both our dental societies and makes sure the students get pre-clinical experience in helping at free clinics. I think it’s a big deal because it gets them set on the path of volunteering, of doing something for the community.”

The visit included a demonstration of the device used at the free screenings, allowing contributors and supporters to see the culmination of everyone’s hard work.

“I see the proposal, I see the reviews, we give them the money, I talk with them on the phone and I hear Petra talk about the work that she’s doing,” said Zender, who facilitated the funding of the collaboration. “But to actually come here and see the actual devices in action … it’s really rewarding.”

Learn more about UCI BLIMC’s vision of moving innovative technologies from “laboratory benchtop to patient bedside.”

Read full article in UCI Beall Applied Innovation Making Waves.

Pictured (from left to right): Kairong Lin, Robynn Zender, Dr. Petra Wilder-Smith, former Sen. Janet Nguyen, Dr. Arezou Goshtasbi, and Ryan Cheung.

Elliot Botvinick Named Entrepreneurial Leader of the Year

On May 29, 2019, Elliot Botvinick was named Entrepreneurial Leader of the Year award at the UCI Innovator Awards Ceremony held by UCI Applied Innovation at The Cove.  This award is given to innovators who have shown an enterprising spirit by transforming at least one significant innovation from the university into a market-ready product or service. The many nominees for this award included Chris Barty, Jeffrey Krichmar, Aimee Edinger, Elliot Botvinick, and Tony Givargis. Elliot Botvinick is a professor at the UCI Henry Samueli School of Engineering. He is considered to be a leader for the research and development of advanced medical devices while also knowing how to bring this research to commercialization. His current research is aimed at treating and diagnosing Type-1 diabetes, as well as standard trauma. He and his research team developed a continuous monitor that measures blood lactate, which helps to identify early signs of organ failure. All of the nominees and winners of these awards are considered to be among the best researchers in and around UCI.

Modulated Imaging Enters Growth Phase with New Name

Modulated Imaging Raises $7M in Series B Funding


Lumitron’s New Platform is Game-changing

Bruce Tromberg to lead the NIBIB

Bruce Tromberg, Ph.D., director of the Beckman Laser Institute and Medical Clinic since 2003 and professor of biomedical engineering and surgery at the University of California, Irvine, has been chosen by the National Institutes of Health to head the National Institute of Biomedical Imaging and Bioengineering.

Read full UCI News article.

Renaissance in light

“We are in a renaissance in light source technology,” stated Dr. Chris Barty, who joined UCI and the BLIMC as professor of Physics and Astronomy in July. And “Renaissance Man,” is one way to describe Barty.

With Ph.D. and M.S. degrees in applied physics from Stanford University and B.S. degrees, each with honors, in chemistry, physics, and chemical engineering from North Carolina State University, Barty joined UCI after serving as the chief technology officer for the National Ignition Facility (NIF) and Photon Science Directorate. Prior to that he was the founder and director of the mission-based Photon Science and Applications program at Lawrence Livermore National Laboratory (LLNL).

At LLNL, Barty helped manage and guide the technical evolution of the world’s highest-energy and largest laser within the NIF – a laser the size of a football stadium. He also played key roles in the development of ultrahigh intensity laser science, laser inertial fusion energy and laser defense activities at LLNL. For more than a decade, Barty has also pioneered laser-Compton technology, an extremely bright, x-ray and gamma-ray light source that can be created with short-pulse lasers and energetic electron beams. In the gamma-ray spectral region, the peak brightness of a laser-Compton light source pulse can be 15 orders of magnitude beyond any other man-made light, making it possible to access and manipulate the nucleus of an atom with photons, an emerging field known as “nuclear photonics.” These highly mono-energetic gamma-ray sources produce narrow, laser-like beams of incoherent gamma rays that can penetrate through lead and other thick containers and can be tuned to a specific energy so they predominately interact with only one kind of material.

“In the early days of lasers, the controlled manipulation of the outermost electron structure of the atom became possible, leading to a wide variety of new applications and science that now impacts many, many aspects of our daily lives,” stated Barty. “Similarly, laser-Compton gamma-ray sources are now enabling ‘nuclear photonics,’ or the photon-based manipulation of proton motion within the nucleus, and thus are leading to new applications and science including the isotope-specific detection of materials for security and advanced medical imaging, and enable novel forms of discovery-class, nuclear spectroscopy.” Since Barty first coined the term “nuclear photonics” in 2008, the related international community has grown rapidly and now includes more than $500 million of activities and a major biennial conference by the same name.

“[At LLNL] We constructed a proof-of-principle laser-Compton machine and used its photons to detect the presence of lithium concealed behind aluminum and lead,” shared Barty. “The machine created a record peak brilliance. It used an existing linear accelerator and custom laser systems designed specifically for laser-based Compton scattering x-ray and gamma-ray sources.”

Barty’s patented laser-Compton technology is now being transferred to industry, and is the foundation behind a new company, Lumitron Technology, Inc., which he helped launch and which will be headquartered in the University Research Park adjacent to campus. As the lead hire in the Convergence Optical Sciences Initiative (COSI), he will concentrate his efforts on building the world’s highest output, tunable, mono-energetic, compact, x-ray light source based on laser-Compton scattering. “My focus will not only be to establish laser-Compton systems as the ‘gold standard’ for imaging and therapy, but also to target a broad ecosystem of new science and technology across a range of industrial, commercial and healthcare applications.”

“When I look here [at UCI], I see the grand vision. BLIMC completely gets the story where academic and industrial activities are encouraged which doesn’t happen everywhere,” stated Barty.

“We are pushing the frontier of basic science and engineering. Laser-Compton technology will enable the location, study and treatment of disease in ways not previously possible. We have a tremendous opportunity to change healthcare and make a real impact on medicine. The unique x-ray capabilities of compact, laser-Compton sources will also play a pivotal role in materials science, micro-fabrication, and the rapid emergence of additive manufacturing.”

Imaging Innovator

Modulated Imaging, Inc. (MI, Inc.) received clearance from the Federal Drug Association (FDA) for its Ox-Imager CS system. This is the first technology developed by a company founded in the Photonic Incubator of the Beckman Laser Institute and Medical Clinic (BLIMC) to be cleared by the FDA. According to UCI alum Dr. David Cuccia, MI, Inc. CEO/CTO, this device is expected to assist clinicians with the identification of lower limb vascular issues, leading to patients receiving more appropriate and timely treatment. With FDA clearance MI, Inc. is now in the process of launching the system at clinics throughout the country.

“This FDA clearance is a major milestone for our company and for the patients and physicians within the vascular treatment communities,” said Cuccia. “Ox-Imager can lead to significant preventive care actions, as well as an estimated potential $6.2 billion in savings per year. We’re proud to be able to provide meaningful information that advances patients’ health and wellness.”

CEO at age twenty-two

At age 22, Austin Russell, a former BLIMC high-school independent researcher, launched Luminar Technologies, Inc. The company recently announced that it is partnering with the Toyota Research Institute to advance self-driving car technology. Russell, CEO of Luminar Technologies Inc., developed an advanced laser lidar sensor system that detects a car’s surroundings in high-definition 3D, paving the way for self-driving cars to “actually work and be safe.”

For Russell, being a pioneer meant having the patience to build a better lidar system that would not only advance the industry, but do it in a field that could save people’s lives. “We’re able to see seven seconds out instead of one second,” Russell shared with Business Insider, “That’s a really big breakthrough.”

Russell, a gifted student, memorized the periodic table by age four and transformed a Nintendo gaming headset into a cell phone by the sixth grade. He first conceptualized and designed augmented reality and wireless power transmission projects during his last two years of high school, working as an independent researcher in the Tromberg lab at the BLIMC.

“Our plan is to power every autonomous vehicle that’s produced and make them so they can truly be safe and autonomous,” Russell said of his future vision. As he stated on Bloomberg.com, “You would push yourself to the limit at least ultimately. That’s what you have to do if you want to make an impact on the world.”

Article adapted from, “Toyota is trusting a startup for a crucial part of its newest self-driving cars” by Johana Bhuiyan on Recode.com; “Meet the 22-year-old college dropout who wants to power every future self-driving car,” by Biz Carson in Business Insider and, “The 22-year-old at the center of the self-driving car craze,” by Alex Webb, Lizette Chapman and Alex Barinka on Bloomberg.com.