Global Laser Charities Save Skin and Change Lives

By Jennie Smith

ORLANDO, Fla. — In 2009, Thanh-Nga Tran, MD, was a dermatology resident at Massachusetts General Hospital in Boston when she traveled to Vietnam — the country of her birth — for a clinical rotation.

There, Tran found that children with vascular and pigmented birthmarks were being treated not with energy-based devices, as had long been standard in the US, or propranolol, which was emerging an effective treatment for hemangiomas at the time.

Instead, they were treated with a topical paste containing phosphorus-32 (P-32), a radioactive isotope. The practice was introduced by French doctors there in the 1950s, and Vietnam’s cancer hospitals had continued using it since that time.

The treatment with P-32 left children worse off than the lesions themselves in many cases, with severe scarring and depigmentation of the treated areas.

When Tran returned to Boston, she consulted with her mentor, dermatologist and laser medicine pioneer R. Rox Anderson, MD, director of the Wellman Center for Photomedicine at Massachusetts General Hospital, about bringing pulsed-dye laser technology to Vietnam and training physicians in its use. “I begged Rox to help me find a way to help treat these children,” Tran recalled. Top specialists, including the late Martin Mihm, MD, also at Massachusetts General; Thuy Phung, MD, a dermatologist at Texas Children’s Hospital, Houston; and J. Stuart Nelson, MD, PhD, medical director of UC Irvine Beckman Laser Institute, Irvine, California, lent their support.

More than 15 years later, the Vietnam Vascular Anomalies Center (VAC), the Ho Chi Minh City clinic that arose from this collaboration, has treated more than 10,000 children, at no cost to their families, with more than $1 million of laser technology donated by device manufacturers.

Vietnam VAC has produced data useful both to clinicians in developed countries and to industry. And it has inspired other laser-based humanitarian startups in countries including Lebanon, Pakistan, and Armenia — and soon, Cambodia.

This last April, at the American Society for Laser Medicine and Surgery (ASLMS) 2025 Annual Meeting in Orlando, Florida, physicians involved in these international efforts brought their colleagues up to date on their projects. During the conference and in interviews afterward, they reflected on their accomplishments and on the many challenges that remain.

A 15-Year Success in Vietnam

 Infantile hemangiomas are benign vascular tumors affecting about 4%-5% of newborns and are more common in girls. Though most will resolve spontaneously, they can be disfiguring; when they are especially aggressive, they can harm vision and interfere with breathing or feeding.

“The pulsed-dye laser allows for a nonscarring improvement or even removal,” Anderson said in an interview, but in 2009, Vietnam lacked any skin lasers at all. A device donated by Candela Corporation became the first to be imported and used in that country.

On the day the clinic opened, 500 children were waiting with their parents. They had not only vascular lesions but also lymphatic malformations, congenital nevi, nevus of Ota, and “myriad other disfiguring birthmarks that would otherwise go untreated in Vietnam,” Tran said at the meeting. And of course, many had scars from prior treatment with P-32.

Tran, Anderson, and their colleagues quickly realized that the clinic would need different types of devices, including lasers to treat scars and pigmented lesions. Over time, more manufacturers, including Lumenis, Lutronic, and Cutera, donated devices. Teams of interventional radiologists and pediatric plastic surgeons from Texas Children’s Hospital also traveled to Vietnam to treat patients with the most severe presentations. The VAC clinicians began hosting annual conferences in Vietnam to train local physicians there in laser medicine and dermatology.

About 5 years into the program, Tran, Anderson, and their colleagues, including Minh Van Hoang, MD, PhD, the clinic’s director, began publishing their findings. Their first reports described the harmful effects of P-32 treatment and a technique for combining laser treatments and epidermal grafting to improve scars in children treated with P-32. The same technique is currently being investigated in people with radiation dermatitis following breast cancer treatment.

Between 20 and 40 children are seen on every treatment day at the VAC’s Ho Chi Minh City clinic. Children with infantile hemangiomas may also receive propranolol, which the VAC team helped introduce in Vietnam.

Though Vietnam VAC is a nonprofit organization registered in the US and supported by donations, its physicians may use lasers at designated times for paying patients, creating another source of revenue. Physicians at the high-volume clinic have contributed many case studies of rare presentations and other findings of value to specialists worldwide and manufacturers.

“There’s a lot of talk at this conference about treating skin of color,” Tran told attendees at the ASLMS meeting. In Vietnam, she said, “we treat skin of color every day with [a Q-switched alexandrite laser]. We can manage congenital nevi, café au lait, and other conditions very safely.”

Anderson noted at the meeting that the VAC’s efforts also helped create a market in Vietnam for laser treatments, bolstered by a rapidly expanding local economy. Hundreds of clinicians in Vietnam and other parts of Asia have attended its annual training and CME sessions. This has changed local practice: The cancer center in Ho Chi Minh City, which had formerly administered P-32, dropped its use and acquired a pulsed-dye laser.

At training conferences, “we talk about how to treat kids, but we also talk about cosmetic stuff,” Anderson explained in an interview. “The companies that donated the equipment are happy because they get to sell products. All boats rise when the tide comes in.”

Vietnam VAC still faces challenges. “Lasers break,” said Tran, now a researcher at the cutaneous biology research center at the Mass General Research Institute, Boston. “We have to find help when they do.” Fundraising is another challenge. “I’ve been hosting an annual benefit for the last 15 years — it’s like doing a wedding every year. We don’t raise a lot of money because, in the end, we’re still small.”

And despite many years of targeted outreach campaigns in the media and with doctors, the team has yet to fully eradicate the use of P-32 in Vietnam. Two remote clinics are rumored to be holdouts.

“Next year when I go, we’re going to visit them,” Anderson said. “We’re going to put together a conference about phosphorus. You can’t just get angry. You have to create a forum where people can really talk about it.”

Lebanon: Tragic Blast Spurs a Laser Charity

 Energy-based medicine specialist Zeina Tannous, MD, a dermatologist who also was trained with Anderson, was an assistant professor of dermatology at Harvard when, in 2011, she made the decision to return to her home country. She became the founding chair of dermatology at Lebanese American University in Beirut.

Eight years later, Lebanon was hit by a dramatic financial crisis and currency devaluation that affected all sectors of society. Healthcare services were severely affected even among people with means, as people could not withdraw money from banks.

Then, in August 2020, the unthinkable occurred. Thousands of tons of stored aluminum nitrate accidentally ignited at the port of Beirut, causing a massive explosion that killed hundreds and injured thousands. Tannous, who had just left the port zone at the time of the blast, returned immediately to aid in the emergency response, and spent days suturing victims.

Blast survivors were left with severe, disfiguring scars. “They were itchy, red, hypertrophic lesions resistant to treatment with injections of steroids,” Tannous said at the conference, “probably because of the presence of the glass in them: a foreign body that was constantly inducing inflammation.”

For 2 years, Tannous offered discounted laser treatments on her own and through aid organizations. But she did not own the type of laser needed to treat these glass scars, and the hospital that did “needed to be paid,” she recalled.

As in Vietnam, where the VAC doctors were able to get underway with a single donated device, one laser changed everything for Tannous: A fractional carbon dioxide laser provided pro bono by the Italian manufacturer Deka. That allowed Tannous to treat blast victims at no cost to them.

Tannous’s charity is not yet incorporated as a US-based nonprofit — “we’re working on that,” she said, but has nonetheless expanded, supported by her students and fellows and the recent donation of a vascular laser from Lutronic.

The addition of that device has allowed Tannous to treat more vascular lesions in people who could not otherwise pay — including refugees from the war in Syria, many of whom struggle to meet their families’ basic needs. “These [vascular] birthmarks can bleed. They can obstruct vision. They can obstruct breathing. But in a time of war and a bad economy, people don’t have the luxury of treating them, because the focus is on survival,” she said.

Tannous, who continues to work closely with Anderson and others at Harvard, described in an interview how her personal mission has evolved far beyond her clinical research and practice. “I would never refuse a patient if he or she doesn’t have money,” she said, adding that she hopes that more energy-based medicine specialists will donate the monetary equivalent of even one treatment per year to efforts like hers and Tran’s.

“Everybody has to do something for the people. Even if you’re working for free. That’s the message of medicine,” she said.

Inspiring Others

 All over the world, free laser clinics are now emerging that follow a similar model with donated equipment and committed physicians, both local and visiting, who are generous with their time. Most of these international efforts share connections to Harvard and to Anderson, who has fiercely championed them and has not been shy about asking industry for help.

“The Pakistan clinic came about because one of my students was Pakistani and saw what we were doing,” said Anderson, who also works closely with a clinic in Armenia. In Cambodia, a physician is planning a clinic modeled after VAC, and another is being planned in Brazil. A newly formed umbrella group, called the Dream Beam Foundation, links all these global efforts and seeks to recruit more specialist volunteers.

“The clinics have different needs,” Anderson said, in terms of patient populations, predominant problems, and the technology and expertise available in each country. “In Pakistan, for example, one of the most useful devices there is the fractional laser for scar revision.”

But in each case, it is the human effort and dedication that will determine a clinic’s success, he stressed. “The lasers don’t just stand alone. They’re just tools.”

Click here to read full Medscape article.

SABPA OC/LA Hosted its 17th Annual Biomedical Forum in Irvine, CA

On April 26, 2025, the SABPA OC/LA 17th Annual Biomedical Forum, one of the three flagship professional forums organized by the Socal Association for Biomedical and Pharmaceutical Advancements (SABPA), convened successfully in Irvine, CA. More than  200 guests from academia, medical device, IVD and biopharmaceutical companies in Southern California and beyond participated in the forum. It was truly inspiring to see the life & medical sciences community come together for thoughtful discussion, collaboration, and innovation. The quality of the program, the diversity of perspectives, and the energy of the speakers and attendees made the forum an exceptional experience.

The event commenced with a welcome speech by Ms. Dongmei Huang, Vice President of SABPA and President of SABPA OC/LA for 2025-26. This year’s forum focused on Innovation and Compliance with a full day of panels and keynotes spotlighting advances in AI, wearable devices, biotech research, regulatory best practices and Entrepreneurship in the Digital Era.

Morning Momentum: Regulation Meets Innovation

In a landmark gathering of biomedical innovators, health tech leaders, and regulatory strategists, a powerful message emerged: the future of healthcare lies at the intersection of AI, continuous monitoring, and smart regulatory navigation.

Dr. Elliot Botvinick from UC Irvine introduced a next-generation implantable multi-analyte sensor, capable of monitoring a wide array of biomarkers — from glucose and lactate to potassium and insulin — every 13 seconds. Designed to function across all skin tones, the device promises to revolutionize chronic care and trauma response by offering real-time, continuous insights without the burden of frequent blood draws. The system’s foundation in spectroscopic sensing and miniaturized wireless technology points to the  future where patient monitoring is both seamless and personalized.

On the regulatory front, Dr. Jay Vaishnav emphasized the critical role of early FDA strategy in launching Software as a Medical Device (SaMD). With AI tools becoming increasingly central to diagnostics and workflow optimization, she underscored the need for cybersecurity, human oversight, and post-market vigilance. Regulatory readiness, she said, is not just a compliance task — it’s a key differentiator for investors and clinicians alike.

Panel discussions on Small Business Innovation Research(SBIR) grants offered tactical guidance to startups navigating through a tough/increasingly challenging funding environment. Key advice included writing grant proposals with clarity, responding constructively to rejections, and embracing feedback. AI, while useful, should be used carefully in submissions — passion and scientific rigor must still come from the innovator.

AI also took center stage in drug development. Dr. Alex Zhavoronkov of Insilico Medicine shared how Generative AI and robotics are accelerating drug discovery by simulating biology and generating new therapeutic candidates — a breakthrough in aging and oncology research.

Dr. Binh Nguyen highlighted that in the evolving pharmaceutical landscape, ensuring the safety, efficacy, and quality of medicinal products is paramount. Quality Risk Management (QRM) has emerged as a critical strategy to proactively identify, assess, and mitigate risks throughout the product lifecycle—from development and manufacturing to distribution and post-market surveillance.

Sessions Explore Innovations in Dental Industry and In Vitro Diagnostics (IVD) Industry

During the lunch break, attendees had the opportunity to participate in three concurrent lunch-and-learn sessions, covering specialized topics offered by SABPA OC/LA sponsors:

  1. The Future of the 3D printing in Dental Industry -Pac Dent
  2. Navigating Global IVD Manufacturing: How Quaero Accelerates Innovation and Market Access – Quaero
  3. Strategic Commercialization of POC & OTC Diagnostics: Unlocking Retail, Distribution, and Reimbursement Pathways – CorDx

Afternoon Spotlight: Generative AI, Wearables, Cell Therapy and Entrepreneurship in the Digital Era

In the realm of cancer therapy, Dr. Peter Wang introduced a remote-controlled CAR-T cell therapy using ultrasound to safely activate or deactivate treatment in solid tumors. Combined with CRISPR, this innovation opens new frontiers in non-invasive, real-time immunotherapy.

From the lab of Dr. Wei Gao came another futuristic development: wearable molecular sensors powered by sweat and AI. These devices target early diagnosis of metabolic diseases, stress monitoring, cancer drug dosing, and even hormone tracking — a noninvasive, continuous, and deeply personal approach to health.

Dr. Laura Li highlighted how AI is transforming genomic interpretation, reducing the cost and complexity of diagnosing rare diseases. Darren LaCour addressed shifting global strategies due to the EU’s Medical Device Regulation (MDR), urging early-stage companies to reconsider their clinical and regulatory entry points.

Closing the event, a forward-looking panel on entrepreneurship in the digital era—moderated by Yinghong Gao of Viva Biotech—brought together leaders from Ancora Medical, Accelerated Venture Partners, Amberstone Biosciences, and BOLD Capital Partners. The discussion highlighted the increasingly challenging investment landscape for digital health startups, where only 1 in 10 ventures now secure funding, a steep drop from 1 in 3 just a few years ago. Investors emphasized a shift toward greater selectivity, prioritizing robust clinical data, experienced advisory teams, and clear, differentiated value propositions. While AI remains a powerful enabler, panelists were clear: AI is a tool, not the business itself.

The Forum Highlighted Future Healthcare Innovations and Collaborative Strategies for Patient-Centered Care

The forum offered a clear vision for the future of healthcare, where new technologies like wearable sensors, AI-driven drug discovery, and advanced diagnostics work hand in hand with smart regulatory planning to improve patient care. From real-time health monitoring to targeted cancer treatments, the message was clear: innovation must be focused, backed by data, centered on patient needs, and meet federal and professional compliance regulation requirements.

But technology alone isn’t enough. In today’s tough funding environment, success also requires strong planning, solid clinical proof, and determined leadership. This event was a reminder and a call to action — encouraging everyone in healthcare to work together, adapt to, and lead the way toward smarter, safer, and more accessible care.

Click here to read full article on Gene Online.

UC Irvine Startup Makani Science Has Created the Most Important Medical Device You’ll Never Notice

Before Michelle Khine co-founded Makani Science, she was just a mother trying to hold her newborn son. He was in the NICU, hooked up to a constellation of wires and monitors, but none of them caught what turned out to be a collapsed lung. Hours passed before clinicians discovered the problem.

By Jill Kato/UCI Beall Applied Innovation

May 23, 2025 – As a biomedical engineering professor at UC Irvine’s Samueli School of Engineering, Khine knew she could design something better. And she did.

That failure planted the seed for what would become Makani Science, a UC Irvine-born startup that’s developed the first wireless, wearable continuous respiratory monitor. About the size of a Band-Aid, the device tracks how a person breathes in real time—even while in motion.

The technology hinges on a strain gauge so sensitive it can detect movement down to 20 microns—less than half the width of a human hair. Unlike traditional systems, it doesn’t rely on tubes, wires, or bulky belts. And, perhaps most importantly, it delivers respiratory data faster than the clinical tools most hospitals rely on today.

“I’ve spent my career trying to improve the health of individuals,” says Dr. Greg Buchert, Makani’s CEO and a former ER pediatrician and healthcare executive. “I believe this device could transform how we think about respiratory care.”

Makani Science was co-founded in 2019 by Khine and her former doctoral student, Michael Chu. The technology they developed addresses one of medicine’s most persistent blind spots: respiration.

That transformation is long overdue. Despite being one of the body’s most essential functions, respiration remains one of the least well-monitored vital signs. Most hospitals infer breathing status through pulse oximetry (which measures oxygen saturation) or capnography (which tracks exhaled CO₂).

But both methods have drawbacks. Pulse oximeters are considered lagging indicators—by the time oxygen levels drop, a patient may already be in distress—and they perform less reliably on individuals with darker skin tones. Capnography is more direct but requires nasal tubing and often malfunctions during movement or sedation.

In contrast, Makani’s wireless sensor sidesteps those limitations. It works wirelessly—whether you’re walking, playing sports, or sleeping—and streams real-time respiratory data to a mobile device. The sensor captures breathing as a continuous waveform, creating a signature for every inhale and exhale.

“Under routine conditions, a five- to twelve-second lead time over existing monitors might not seem like much. But when someone is deteriorating? That’s huge,” Buchert says.

Combining that kind of functionality with real-world momentum is no small feat. Neither is Makani’s pace: in just six weeks, the startup cleared three major milestones—FDA clearance, a critical round of funding, and a competitive $1.1 million NIH Catalyze grant.

Makani’s aim is to make that kind of early detection possible not just in the ICU, but anywhere someone is breathing. A second-generation model is already underway. The upgraded version will be smaller, with longer battery life, and will have additional features like heart rate monitoring, and a two-week lifespan to match other market-ready wearables like Continuous Glucose Monitors and Zio Patches.

The most urgent testbed for the technology is neonatal intensive care. Backed by their $1.1 million NIH Catalyze Grant, Makani is developing a version of the sensor for premature infants at risk of apnea of prematurity—episodes where a baby stops breathing for 20 seconds or more. These episodes, especially when frequent or prolonged, are linked to long-term developmental delays.

“The frequency and duration of these apneic events is associated with delays in intellectual, motor, and language development,” Buchert explains. “These kids will be compromised for life. If we can interrupt or prevent the apneic events, it’s not just life-saving — it’s life-changing.”

Makani is currently collaborating with clinicians at CHOC Children’s Hospital to trial the device in this context.

“If we can detect early signs of deterioration in someone with asthma, COPD, or sleep apnea, we can help keep them out of the ER”

– Dr. Greg Buchert

The company also sees wide-ranging applications in adult respiratory care, outpatient sedation, and athletic performance. Biofeedback from continuous breath monitoring could help athletes fine-tune endurance or improve recovery. The Department of Defense has expressed interest in monitoring stress in pilots, soldiers, and veterans exposed to environmental hazards. But Makani Science’s biggest impact may come from helping people avoid the hospital all together.

“If we can detect early signs of deterioration in someone with asthma, COPD, or sleep apnea, we can help keep them out of the ER,” Buchert says. “The goal is to help people stay healthy, and at home.”

This mission to improve lives and reduce hospitalizations is rooted in research that began at UC Irvine. The sensor’s core technology was developed in Khine’s lab and supported by a Proof of Product (PoP) grant from Beall Applied Innovation. The grant helped Makani turn its sensor into a product ready for the real world. The team tested its sensitivity, strength, stickiness, and safety on skin to make sure it could hold up in medical settings. They also ran usability studies, began weaving in machine learning to interpret breathing patterns, and started building relationships with potential partners to bring the device to market.

Beyond funding and lab space, the university has also helped raise the company’s profile.

“UC Irvine has helped champion Makani at conferences and in the community,” Buchert says. “That’s been really important for our visibility.”

“Makani is deeply committed to advancing their technology—they’re in the lab consistently, putting in the work to derisk and validate each step”

– Sandra Miller, Executive Director, University Lab Partners

Today, Makani is housed at University Lab Partners (ULP), a non-profit wet lab incubator and accelerator located just minutes from campus at UC Irvine Research Park. Buchert credits Makani’s location—and the ecosystem around it—with accelerating their development.

“ULP has been an incredible place to grow—having access to a wet lab, being surrounded by other startups, and learning from teams just a step or two ahead of us has made a huge difference,” Buchert says.

From the incubator’s side, the feeling is mutual.

“Makani is deeply committed to advancing their technology—they’re in the lab consistently, putting in the work to derisk and validate each step,” says Sandra Miller, Executive Director at ULP.

She notes that Buchert and Chu are not only building a promising company—they’re also building community.

“They show up, they support other founders and invest their time mentoring students through our STEM outreach programs. That kind of leadership is exactly what we strive to foster at ULP,” Miller says.

Makani has also secured early-stage funding from Tech Coast AngelsKoa Accel and the Cove Fund, three influential backers in the Southern California medtech scene. Their early support signals confidence not just in the technology, but in Makani’s potential to capture a share of a rapidly growing space. The global market for respiratory monitoring and disease management is projected at $153 billion. It’s a staggering figure, and one that reflects just how much room there is to innovate.

Respiration has long been overlooked in the vital sign hierarchy. As wearable health tech goes mainstream, Makani’s small, data-rich sensor may have arrived at exactly the right time.

With FDA clearance in hand, the company is preparing for commercial launch by the end of 2025. They’ve already had to turn down pilot requests—from Olympic trainers to military partners—simply because they don’t have enough devices in production.

“I know our sensor will save lives and improve the health of many people,” Buchert says. “That’s what I find the most exciting.”

And if Makani succeeds, the device might not just improve how we monitor breath—it could redefine what we expect from vital signs altogether.

Click here to read full article on the UC Irvine Samueli School of Engineering website.

 

MEDTECH: FDA approves Makani Science’s small, bandage sized respiratory monitor

By Yuika Yoshida, Orange County Business Journal 

Could ‘Revolutionize’ Neonatal Care, CEO says

IRVINE – Makani Science is one step closer to commercial launch.

The Irvine medtech company last month received 510(k) clearance from the Food and Drug Administration for its wireless, wearable respiratory monitor in adults.

“It shows that our device not only works as we say it does, but it shows that it’s safe, it’s accurate and at least equal to current devices that are on the market,” Chief Executive Greg Buchert told Makani’s respiratory monitor is a small stretch sensor made of plastic sheets that shrink when heated.

The company has raised more than $3.5 million to date, including a recent $1.1 million grant from the National Institutes of Health.

With approval, commercialization could begin as early as the fourth quarter of this year, according to Buchert.

 15-Month FDA Delay

It took about 15 months to get approval, Buchert said.  The process was delayed due to the FDA changing its standards, forcing the company to repeat its clinical trials and meet new cybersecurity requirements.

“We performed, we executed and we got the clearance,” Buchert said.

Makani was co-founded in 2019 by Michelle Khine, a biomedical engineering professor at the University of California, Irvine, and her post-doctoral student Michael Chu, who is now chief technology officer.

Its respiratory monitor is intended to be worn on the abdomen.  Data is then transmitted to the user’s phone via Bluetooth, eliminating the need for wires and making it possible for people to wear on the go.

“There are continuous respiration monitors, but they don’t work well during motion,” Buchert said.

 $1.1M Grant from the NIH

Makani also received a $1.1 million grant from the NIH the same month it got the FDA approval.

It was awarded by the NIH’s National Heart, Lung and Blood Institute to classify and prevent apnea of prematurity, a condition where newborns suddenly stop breathing for short periods of time.

Babies rarely die from the episodes, but research shows that they’re later associated with delays in intellectual language and motor development depending on the frequency and duration of the apnea.

Nearly half of babies born before 35 weeks will experience apnea of prematurity, according to Buchert.

The grant will help fund the development of a second-generation version of the company’s device that will measure respiratory rate, but very few track volume, he said.

Makani is conducting the study in partnership with Dr. Terrie Inder, a director of neonatal research, at Children’s Hospital of Orange County, which merged with Rady Children’s Hospital San Diego to create a new combined entity called Rady Children’s Health.

The second-generation device will be modified with a stimulator so that after identifying a pause in breathing, it can stop the apneic event.

Eventually, the company’s goal is to apply a machine algorithm to the device to see what’s causing apneic events and, if possible, stop them before they occur, Berchert said.

“This could be revolutionary in neonatal medicine,” he said.

Click here to read full Orange County Business Journal article.

A Single Photo Ignites A Mystery That Has Historians Rethinking Ancient France

As life expectancy increases, the question of whether people can continue to perform at their best in demanding jobs into their sixties and seventies is more relevant than ever. But is there a point when age makes working less feasible? Recent research has provided some insights into this ongoing debate.

When Is It Time to Step Down?

In recent decades, life expectancy in developed countries, including France, has increased significantly. This has led to a growing average age across populations, with more people holding major positions of responsibility. But with this rise in age, comes the question: Are they too old for such critical roles?

The debate has been particularly prominent around positions that demand cognitive sharpness, such as professors, doctors, and politicians. Some voices in the public discourse, including advocates of age limits for certain political positions, argue that cognitive abilities decline with age, and it’s crucial to consider this when making decisions about who should be in charge.

Studies indeed show that cognitive functions can begin to decline as we age. A study from Cambridge University found that a significant number of individuals over the age of 65 showed a decline in executive function, with mental processing speed slowing down around the age of 60. Mark Fisher, who leads the Neuropolitics Center at the University of California, Irvine, commented on the topic, stating, “I think 65 is a reasonable age to consider as a general breaking point.” He added that there is “huge individual variability,” meaning the effects of aging vary widely from person to person.

The Debate on Setting an Age Limit

Those advocating for age limits argue that the risk of making critical mistakes increases significantly as cognitive abilities decline. They propose establishing an age limit for leadership positions, similar to the suggestions made in the United States by Republican presidential candidate Nikki Haley. She has called for politicians over 75 to undergo mental competency tests, a proposal that has sparked considerable controversy.

While these tests might seem like a way to ensure that leaders are still fit for their roles, critics argue that they could be politically motivated and potentially discriminatory. Moreover, determining who should take the tests and how they would be administered could present logistical challenges.

Additionally, some argue that older individuals bring invaluable experience and wisdom to the table. In fact, many seniors have sharper cognitive abilities than younger people due to their extensive life experiences, which can be incredibly beneficial in leadership or business contexts.

Lifestyle Matters More Than Age

While the age of 65 often serves as a rough consensus for when cognitive decline begins to affect work performance, this is by no means a universal truth. The relationship between age and work capacity is complex. Factors such as lifestyle, environment, and overall health play a significant role in maintaining cognitive abilities.

study published in the journal Neurology highlighted that individuals who maintain a healthy lifestyle, including regular physical activity, good nutrition, and mental engagement, tend to retain their cognitive functions for longer. This suggests that with the right lifestyle choices, many older individuals can continue to work at full capacity long past traditional retirement age.

Conclusion

Ultimately, determining when someone is too old to work effectively is not just about hitting a certain age. Instead, it’s about the individual’s health, lifestyle, and overall mental sharpness. Age is only one factor in the equation, and with the right support and mindset, many people can continue to contribute effectively into their seventies and beyond. The debate is far from over, but what’s clear is that age alone should not be the sole determinant in whether someone can still excel in their work.

Click here to read the full article on the WECB website.

Irvine’s Makani Science Achieves Milestone for Cutting-Edge Respiratory Device

Makani Science Receives FDA Clearance for Groundbreaking Respiratory Monitor

Irvine, Calif. – April 2, 2025 – Makani Science, an innovator in wearable respiratory monitoring technology, today announced that it has achieved 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market and distribute its Makani Respiratory Monitor.

This clearance validates patient safety, as well as the accuracy and reliability of Makani’s innovative device, which is designed to continuously monitor respiratory rate in real time. The Makani Respiratory Monitor underwent comprehensive and rigorous testing and evaluation, successfully demonstrating its performance in a variety of clinical and real-world settings This 510(k) clearance is a significant milestone for the company, providing premarket approval for the Makani Respiratory Monitor.

This small comfortable unique monitor enables monitoring of ambulatory individuals rather than being hampered by wires. The monitor can provide continuous real-time information to iOS devices that can be accessed by patients and their healthcare providers. The immediate availability of respiratory performance provides an advantage over other respiratory monitors that provide delayed information.

“FDA clearance opens the door to commercialization, clinical integration, and strategic partnerships,” said Greg Buchert, MD, MPH, and CEO of Makani Science. “It’s not just a regulatory win—it’s a strong endorsement of the technology we’ve worked tirelessly to develop and refine. As a physician, I am confident we will improve the health and lives of individuals who use the Makani Respiratory Monitor.”

With FDA clearance secured, Makani Science is moving forward with manufacturing, early clinical deployments, and research collaborations. The device is poised to support applications in hospitals, outpatient clinics, athletic performance monitoring, and early disease detection—anywhere continuous, non-invasive respiratory monitoring can make a meaningful difference.

About Makani Science

Makani Science (www.makaniscience.com) is a medical technology company based in Irvine, California specializing in wearable, real-time respiratory monitoring. Its flagship product—the Makani Respiratory Monitoring System—delivers accurate, continuous tracking of respiratory rate in a lightweight, wireless design. The company is focused on transforming how breathing is monitored across clinical, research, and performance settings. Makani Science is on a mission to help millions breathe better through smarter, non-invasive monitoring solutions. Contact Dr. Greg Buchert (greg@makaniscience.com) for more information.

Click here to read full press release.

Top Moments in Irvine Innovation

UCI Beckman Laser Institute specialists, led by Dr. J. Stuart Nelson, invented and patented pioneering laser surgery cooling technology in 1992. The invention made possible the early, painless, safe and effective treatment of disfiguring birthmarks in infants and young children. The technology is now the standard of care and is incorporated into more than 25,000 laser systems worldwide; it is also the top revenue producing patent at UC Irvine, earning $60 million.

Click here to read full article in the Irvine Standard.

Twelve Senior Projects Win Dean’s Choice Awards at Annual Design Review

By Cassandra Nava, UC Irvine Samueli School of Engineering

April 2, 2025 – Drone demos, virtual reality goggles and miniature robots were just a few of the 200 projects on display at the Samueli School of Engineering’s Annual Design Review on Friday, March 14. Around 1,000 engineering students from the school’s six departments filled up the UC Irvine Student Center where they presented their group projects.

The senior design program gives fourth-year engineering students an opportunity to address real-world problems with innovative ideas for creative solutions. After working in teams on their projects for two quarters, students are then able to present their ideas by displaying or demonstrating them to a wider audience at Design Review. The annual event allows students to practice their presentation and networking skills, as they share their projects with alumni, industry professionals, faculty, fellow students and staff.

Engineering Dean Magnus Egerstedt welcomed everyone and encouraged students to enjoy the event. “You’ve been in classrooms, internships, all sorts of things, but this is where the rubber hits the road,” said Egerstedt. “This is where the magic is, where you show off what you’ve learned. This event right here is what the value of an Anteater engineering education is all about.”

Project teams spanned over three rooms in the Student Center. Clever and ingenious solutions were offered for important and practical issues, like a smart pet feeder, elderly care alert bracelet and sign language robot. Students kept attendees engaged with their presentations and demonstrations of interactive devices like a playable computer keyboard connected to a harp or an instant smart water bottle that can test a pH level in seconds.

Around 40 guests attended the event, including Samueli Academy High School engineering instructor AJ Polizzi, who has attended regularly over the years, as it influences how he prepares his students.

“It gives me a chance to interact with current engineering students,” Polizzi said. “And we’re feeding back what you guys are doing here to help motivate our students to pursue that work in high school. We go back to the kids and say, ‘hey, look, this is what they’re doing over in college.’ We are teaching them the same lesson: going from an idea to a design to a product.”

The three-hour event ended with the announcement of the Dean’s Choice Awards. Of the 21 nominations, 12 projects were recognized. The dean and a team of graduate student judges selected the winners based on the following criteria: if the project solves an important problem, if it is practical and if it has the wow factor. Below are this year’s Dean’s Choice Award winners.

BIOMEDICAL ENGINEERING

EMG- FES: Rehabilitation & EMG-Assisted Control for Health (REACH) 

This project uses a patient-specific automated electrical simulation system to treat stroke victims’ hand contractures. Using AI techniques, the students hope to automate and improve stroke rehab and physical therapy.

Team members: Andrew Eck, HyungCheol Kim, Michael Song, Edmund Totah

J & J Medical Simulator: SimuMed Solutions  

The team won for their design of a model to help support catheter testing and improve catheter development safety through a realistic groin puncture model. The team — sponsored by Biosense Webster, a Johnson & Johnson MedTech company — won due to their accurate engineering methods in developing and testing materials.

Team members: Hanh Nguyen, Janelle Ho, Lanie Le, Nadeen Morsi, Raul Quintero, Charissa Taim

CHEMICAL AND BIOMOLECULAR ENGINEERING

Batch Distillation

Students in this team tackled challenges relating to sustainable energy and environmental protection by investigating batch distillation. The use of distillation can be applied to everyday uses and products like to separate components, purify products, or aid in the production of alcohol, fragrances and more.

Team members: Amy Fernandez, Salvador Martinez, Chloe Lee, Gordon Ko

CIVIL AND ENVIRONMENTAL ENGINEERING

Black & Veatch: OASIS Project

This project investigated the possibilities of utilizing secondary effluent, or treated wastewater, from a water reclamation facility to provide drinking water. The group of students found that this will drought-proof the water supply for climate change resilience. They also displayed their findings of water quality requirements, treatment technologies and permits and regulations needed to make this a reality.

Team members: Joshua Faith, Taylor Mangold, Monica Tith, Por Asvaplungprohm, Justino Lopez-Gonzalez

APEX Environmental & Water Resources Remedial Design and Implementation 

Students in this team were able to explore the field of environmental remediation, which is the process of restoring contaminated environments. The students utilized hands-on and real-world experience at a site with significant environmental contamination. The project identified site-specific challenges and evaluated various approaches and technologies.

Team members: Kendrick Pam, Ahtziri Meneses, Henry Rui Zhi Quan, Louwing Perez

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Envision – Gesture Interface Device 

This team’s project aimed to solve the problems with enabling real-time AI for gesture recognition on devices with restricted storage and processing capabilities. The goal of the project was to help people not familiar with computers to have easier access to computing. The demonstration showed practical functionalities and input methods for applications.

Team members: Ally Liu, Derek Duy Dao, Gregory Shklovski, Yasper De Jong

Project Prometheus (Wildfire Detection System) 

A wildfire monitoring system using energy-efficient sensor packs was proposed by this team. The dangerous issue of wildfires was addressed by the students, as they considered the challenges that remote areas face with early detection.

Team members: Andy Yang, Cem Babalik, Jaime Rodriguez, Kenny Lai 

Glove Band (Air Violin) 

The students in this team created a glove that allows the wearer to “play” violin with just hand movements. The sensor-embedded glove translates user movements into musical notes, which are processed by a microcontroller and output from a speaker.

Team members: Tangqin Zhu, Canting Zhu, Zhengyang Zhuang, Thomas Yeung, Aarav Awasthy

MECHANICAL AND AEROSPACE ENGINEERING

Fluid Powered Vehicle Competition (FPVC) 

The Zotdraulics team built a vehicle that runs on hydraulic and pneumatic power via human input. The students represented UCI in its first entry into the Fluid Power Vehicle Challenge sponsored by the National Fluid Power Association, whose goal is to further fluid power technology.

Team members: Adrian Jimenez, Ben Trejo, Elaine Kwok, Ian Lin, Karen Gines, Steven Tsui

UCI CanSat 

The annual international engineering challenge, CanSat asks student teams to design and build a space-type system. This year they designed a container deployable from a rocket with controlled descent rates. Last year, the team placed second in the U.S. and fourth worldwide.

Team members: Kaylee Kim, Khushi Gupta, Sarah Ho, Brady Cason, Naethan Fajarito, Timothy Yee, Diane Yoon, Andrei Darujuan, Felix Jing, Zhanhao Ruan

UAV Forge

This team developed an autonomous aerial vehicle to compete in the international RoboNation Student Unmanned Aerial Systems competition. The students hope their aircraft design will outperform their entry in last year’s competition, where they placed in fourth place nationwide.

Team members: Silvia Tinelli, Ozzy Sanchez-Aldana, Eesh Vij, Anthony Tam, Trung Huynh, Isaiah Jacobs, Eric Pedley, Octavio Partida, Philip Jian

MATERIALS SCIENCE AND ENGINEERING

JPL: Designing Crushable Lattices for Terrestrial Hard Impactors 

Team members in this NASA JPL-sponsored group set out to find solutions for a low-cost hard landing of mission architecture. This is relevant for when rocks samples from Mars are brought to Earth. Students developed a lattice structure that will absorb energy from a hard landing.

Team members: Andy Chen, Timothy Dang, Bryan Gong, Joelene Velasco, Martin Zhong

Click here to read full article on the UC Irvine Samueli School of Engineering website.

 

From Toy Slime to Medical Sensors

UC Irvine Beckman Laser Institute & Medical Clinic Engineers Develop Safe, Paint-On Electronics for Skin-Based Health Monitoring

Researchers at UC Irvine have pioneered a groundbreaking nontoxic, ultra-flexible silver ink that can be applied directly to the skin, creating wearable medical devices, such as heart monitors and wireless communication patches in minutes. This innovative technology, inspired by child-safe slime and utilizing simple materials like glue and borax, brings high-performance health monitoring closer to everyday use.

The project was led by Dr. Michelle Khine of the UC Irvine Department of Biomedical Engineering and Beckman Laser Institute & Medical Clinic. Her team developed a water-based ink that uniquely combines high conductivity, stretchability, and skin safety—characteristics that are typically challenging to achieve simultaneously. Unlike conventional wearable devices that rely on rigid wires and potentially irritating adhesives, this ink forms a soft, seamless layer that flexes with the body, maintaining functionality even during activities, such as running, swimming, or bending.

In laboratory tests, the ink was successfully used to create flexible ECG (electrocardiogram) sensors and NFC (near-field communication) antennas. These devices performed comparably to commercial monitors but offered superior comfort and resistance to motion artifacts—signal distortions caused by movement. The waterborne nature of the ink, free from toxic solvents, enhances the safety for skin contact and sustainability for widespread use.

Dr. Khine’s research exemplifies the translational approach championed at UC Irvine Beckman Laser Institute & Medical Clinic, focusing on the development of fast, accessible technologies that could reduce healthcare costs and improve patient comfort. By transforming a simple material into a powerful health monitoring tool, the researchers are paving the way for personalized, on-skin electronics in clinics, homes, and various other settings.

Click here to read full article published in Sensors (Basel).

 

Pioneering Treatments for Port-Wine Birthmarks

UC Irvine Magazine | Winter 2025

Three to five out of every 1,000 babies are born with a port-wine birthmark, a splash of red or purple on the skin somewhere on the body, mostly commonly the face. Unlike smaller, lighter birthmarks, port-wine marks can darken, thicken and develop complications such as bleeding and infections – and may be associated with other conditions like glaucoma and even seizures.

“They can also impact a person’s social interactions and psychological well-being, particularly when they cover a sizable portion of the face,” says Dr. Kristen Kelly, UC Irvine professor and chair of dermatology.

Using a pulsed dye laser, she zaps the purple-tinted blood vessels, heating them with intermittent bursts of light until the blood flow stops and the vessels break or develop clots and resolve. The targeted therapy sometimes requires as many as 30 treatments to effectively lighten a port-wine birthmark.

UC Irvine scientists have been at the forefront of addressing these signature marks for more than a decade. Dr. J. Stuart Nelson, medical director of the Beckman Laser Institute & Medical Clinic, pioneered the first cooling laser device in 1994, revolutionizing treatment for individuals with port-wine birthmarks. The cooling device protects the surface of the skin, allowing doctors to safely deliver higher doses to event the youngest patients while minimizing the possibility of complications. Depending on the size and depth of the blood vessels, many people experience dramatic benefits.

Unfortunately, the discoloration sometimes reappears. “The risk of vessels returning is lower when we start treatment during the first year of life,” says Kelly, whose patients range from infants to individuals in their 90s. To reduce recurrence, UC Irvine researchers are investigating approaches to combine lasers with medication. New medicines may need to be developed, Kelly adds.

These epidermal anomalies aren’t just a cosmetic concern. They can thicken the skin, produce nodules and, in some cases, affect the organs, including the yes or brain. “Since we don’t know which patients are going to develop progression or complications,” Kelly says, “it’s important for anyone who has a port-wine birthmark to seek car from a qualified expert.”