Beckman Laser Institute
  • About Us
      • About Us
      • Mission & Vision
      • Message From the Founding Director
      • History
      • By the Numbers
      • Employment
      • News
  • Medical Clinic
      • Medical Clinic
      • Conditions & Treatments
      • Why Choose Us
      • Clinical Research Protocols
      • Our Physicians
      • Our Clinic Team
  • Research
      • Research
    • Core Research
      • Modeling & Computation
      • Multimodal Endoscopy
      • Microscopy & Microbeams
      • Diffuse Optical Imaging
      • Laser Therapy
    • Research Programs
      • COVID-19 RESEARCH
      • Medical Applications
      • Laser Microbeam Program (LAMP)
    • Shared Resources
      • Shared UCI Access Resources
  • Education & Outreach
      • Education & Outreach
      • Prospective Students
      • Access to Careers in Engineering and Sciences (ACES)
      • Publications
      • Mechanical Ventilation Amid COVID
      • Leaders in Light
      • Multiscale Biophotonics Training Program
      • Events
      • LASER Magazine
      • Course Catalog
  • Industry
      • Industry
      • Photonic Incubator
      • Technology Transfer
      • Patents
      • Convergence Optical Sciences Initiative (COSI)
      • Corporate Partners
      • Advisory Board
  • People
      • People
      • Our Faculty
      • Our Founders
      • Directory
      • Our Research Team
      • Our Research Management Team
      • Our Administrative Team
  • Giving
      • Giving
      • Donate Online
  • How to Give
  • Ways to Give
  • Search
  • Menu Menu

Archive for category: News

Pushing Cancer Treatment into the Future

November 19, 2024/ News /by Gabrielle Comfort

Lumitron Technologies, a company housed in the UC Irvine Research Park and co-founded by Professor Christopher Barty of the UC Irvine Department of Physics & Astronomy, is developing a novel X-ray and electron beam machine called HyperVIEW™ that aims to selectively image cancer in the body and eliminate it while minimizing damage to surrounding tissue.

“The machine has now generated electron beams that can be used to treat cancer anywhere in the human body and x-ray beams that follow the same path as the electrons that can image cancer at 100 times beyond the resolution of conventional clinical systems,” said Barty. “The holy grail is that ultimately you will have the ability to guide your cancer treatment in ways that nobody’s ever been able to do before.” HyperVIEW™ is a fourth-generation, laser-Compton X-ray technology Barty started developing when he was a scientist at Lawrence Livermore National Laboratory. HyperVIEW™ X-rays will “allow you to image soft tissues at potentially cellular levels, something that has only ever been done at billion-dollar synchrotron facilities,” Barty said, which means Lumitron’s technology could one day both track and treat cancer at the cellular level in the human body. The company plans to have FDA approval for initial, precision cancer imaging applications by late 2025 and moved HyperVIEW™ to pre-clinical cancer treatment studies late this summer. “With this technology, we may eliminate the need to ever remove a breast or prostate again,” said Barty.

Click here to read the 2024 UC Irvine Physical Sciences Dean’s Report.

https://bli.uci.edu/wp-content/uploads/2025/01/Barty-Web-PS.png 1080 1920 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-11-19 14:46:002025-01-08 14:47:49Pushing Cancer Treatment into the Future

Resilience leads to better outcomes

November 14, 2024/ News /by Gabrielle Comfort

Dr. Thair Takesh designs novel dental device to minimize the spread of infection

In 2015, Dr. Thair Takesh, a dental surgeon, periodontist and implantologist, joined the lab of Dr. Petra Wilder-Smith at UC Irvine Beckman Laser Institute & Medical Clinic.  With his specialty background, he found a home, contributing to technology development, commercialization and clinical research studies in oral health.

“It was a great partnership,” stated Dr. Takesh.  “Dr. Wilder-Smith was looking to expand her work.  Having advanced surgical training, I was able to address complex issues of the tooth and handle dental implants, contributing a different skill set to the team.”

Since then, Dr. Takesh’s research has spanned a wide range of topics.  This includes developing low-cost optical techniques for detecting microcracks in teeth; creating an artificial intelligence (AI)-powered low-cost pen for the detection and monitoring of acute and chronic wound infection by non-specialists and innovating several noninvasive approaches to mapping and monitoring gingival and periodontal health.

“As a clinician, I have the opportunity to assess the needs of dental professionals, consult on the existing projects and test protypes to provide feedback,” stated Dr. Takesh.  “My aim is to improve the lives of dentists and hygienists, as well as enhance outcomes for patients.”

Dr. Takesh’s latest project is designing and validating a novel aerosol-eliminating dental ultrasonic scaler to minimize the spread of infection between patients and dental professionals.  Ultrasonic scaling is known for producing the highest emissions and risk among dental and medical tools. However, current technologies that address this issue are costly, cumbersome, time-consuming and ineffective.  Dr. Takesh’s work seeks to overcome these challenges, providing a more effective, efficient and practical solution.

“The idea came after COVID, where the spread of infection was of high concern.  During dental procedures, saliva, blood, plaque and other liquids or invisible particles are suspended in the air from the patient’s mouth.” stated Dr. Takesh. “These aerosols remain airborne for up to three days, land on surfaces and potentially reach the lungs if there is no adequate way to alleviate the problem.”

The innovative dental ultrasonic scaler effectively evacuates 82 percent to 95 percent of dental aerosol and droplets directly at the source, thereby preventing the spread of airborne bacteria and viruses.  The design offers several benefits.  This includes reducing entry of infectious materials from entering the dental clinic environment, minimizing personnel costs by eliminating the need for an assistant to perform intra-operative suction and supporting clinicians by reducing musculoskeletal fatigue and injury through improved ergonomics.

“In working with Dr. Wilder-Smith, I am always learning and gaining new skills,” stated Dr. Takesh.  Often, I must shift my thinking from a traditional dentistry perspective to the mindset of a biomedical engineer.  I enjoy discovering a solution to each challenge.”

Dr. Takesh developed various methods to quantify the efficacy of the proposed design.  These approaches include mapping reductions in aerosols and droplets, measuring distance of the spread and completing thermal measurements to ensure that the device cools effectively. 

“Like with many inventions, there have been numerous iterations of this protype,” stated Dr. Takesh.  “With each iteration, we validate the design’s effectiveness and make improvements, continuously repeating this cycle until the risk of infection is minimized, while ensuring safe dental practices.”

Upon successful completion of the project, Dr. Takesh envisions translating the technology to multiple other dental and medical power-driven devices.  This could potentially enhance safety and efficacy across various healthcare settings by minimizing infection associated with aerosol generating procedures.

“Dr. Takesh’s contributions are invaluable in the field of dental and medical technology,” stated Dr. Wilder-Smith.  “His efforts showcase his ability to drive meaningful advancements in healthcare, positively affecting the lives of practitioners and patients worldwide.”

Beginnings in Syria

Dr. Takesh’s journey to UC Irvine was marked by significant challenges and resilience, with roots in Aleppo, Syria.  At the age of 12, his father was jailed for opposing the Syrian regime.  This left Dr. Takesh, the eldest son of seven children, with the responsibility of helping to raise his siblings.

“My father was jailed for 17 years,” stated Dr. Takesh.  “He never saw a judge or was brought to court.  He disappeared for a long period of time, and we went without knowing if he was alive or had died in jail.” 

In addition to caring for his family, he spent his childhood in a constant state of fear under the dictatorship regime.  This fear is encapsulated by a well-known saying in Syria, “the walls have ears.”

“We couldn’t even whisper,” stated Dr. Takesh.  “We were terrified of being punished for saying the slightest thing.”

Despite these hardships, Dr. Takesh’s mother prioritized education.  With the help of scholarships, she was able to send him and his siblings to private school.  This provided a healthier environment for the children.  This focus on education, along with Dr. Takesh’s dedication and passion for learning, enabled him to excel academically.  His strong academic performance led him to a career in dentistry.

“In dentistry, each person and each tooth are different,” stated Dr. Takesh.  “You are constantly using your hands, which means you continually have to improve your skills.”

In 2000, Dr. Takesh temporarily closed his twenty-year-old dental practice in Aleppo to pursue further specialty training in implantology and prosthodontics in the United Kingdom.  During this time, his wife, Amal Alachkar, was furthering her education by pursuing her Ph.D.  This period of advanced training and education allowed Dr. Takesh the opportunity to enhance his expertise.

Upon returning to Aleppo, Dr. Takesh re-established his practice, specializing in periodontology, oral implantology, temporomandibular joint (TMJ) disorder and prosthodontics.  He also pursued an additional master’s degree in biomechanical engineering, which provided him with a biomechanistic understanding of many oral dysfunctions.  This multidisciplinary approach enriched his practice, allowing him to address complex dental issues with a comprehensive perspective.

“During this time, I was going to school, teaching and working at my practice,” stated Dr. Takesh.  “The money that I earned, provided for my mother and siblings.  In Syrian culture, you prioritize family much more than in Western cultures.  You support one another without having to ask.”

Coming to the U.S.

In 2011, Dr. Takesh traveled to the United States when Dr. Alachkar was awarded a one-year Hubert H. Humphrey Fellowship to study at Penn State.  However, with the outbreak of civil war in Syria, the couple and their two children were unable to return to their home country.  This unexpected turn of events led the family to build an entirely new life in the states.

“When the revolution started, we thought it would be temporary, but it worsened and the regime was bombing our country – our city,” stated Dr. Takesh.  “We had spent our whole life saving to establish ourselves in our country.”

“We had left our house, our belongings – everything,” he stated. “It was impossible to go back.”

One year later, after the unbelievable challenge of starting anew, the family moved to California.  Dr. Alachkar, a neuroscientist, joined the UC Irvine School of Pharmacy and Pharmaceutical Sciences. With no dental school on campus, Dr. Takesh spent the next two years working without pay in the Department of Chemical Engineering.  Eager to pursue something related to his profession, he was introduced to the only dentist at UC Irvine, Dr. Wilder-Smith, by Dr. Olivier Civelli, Eric L. and Lila D. Nelson Chair in Neurpharmacology and Professor of Pharmaceutical Sciences and Developmental & Cell Biology.

Returning to Syria

Besides dentistry, Dr. Takesh is passionate about serving underserved communities, particularly in his home country.  For the past three years, he has partnered with humanitarian organizations to provide aid to hundreds of refugees.  He hosts lectures about oral health at local universities, trains dental students and offers free dental care and performs oral surgeries for refugees.

“I typically fly into neighboring countries, like Turkey or Lebanon, then drive to the refugee camps in an area out of regime control,” stated Dr. Takesh.  “If I were to travel outside of this area, then I would be arrested and potentially jailed for the rest of my life.”

With over 2 million refugees residing in this compact area, these clinics provide critical access to healthcare for many displaced Syrians. During the few weeks that Dr. Takesh is in the country, he dedicates his time to helping as many people as possible.  His efforts make a significant difference in the lives of refugees, providing dental care amidst challenging circumstances.

“With the hardships that people face in the camps, oral health is the last thing on their minds,” stated Dr. Takesh.  “I stress the importance of teeth cleaning and the relationship between oral care and other diseases, especially those that affect the heart.”

It is not only the physical hearts of the patients that Dr. Takesh worries about, but also the emotional well-being of those he serves.  Having been displaced himself, he understands the country, the language and profound effects of trauma and stress.  This shared experience allows him to connect deeply with his patients, offering not only medical care, but also empathy.

“These overpopulated camps were designed to be temporary, but they are seemly permanent,” stated Dr. Takesh.  “It’s one thing to hear stories, but to witness the situation with my own eyes was above and beyond what I could have ever imagined. “  

Today, Dr. Takesh feels fortunate to have connected with Dr. Wilder-Smith and the opportunities that working at the Institute has provided.  It has allowed him to continue his professional journey and integrate his passion for dentistry with his commitment to serving others both locally and globally.  This partnership has opened many doors for collaboration and growth.

“It gave my life meaning again,” stated Dr. Takesh.  “I am fortunate to have raised my kids in a safe area, surrounded by kind people and having helped others – being able to help others is the most important thing.” 

“[As a Syrian,] it has been a difficult life, but perhaps a hard life makes you a better person,” he stated.

Facts about Syria

  • After over a decade of conflict, Syria remains the world’s largest refugee crisis.
  • Since 2011, more than 14 million Syrians have been forced to flee their homes in search of safety.
  • More than 7.2 million Syrians remain displaced in their own country where 70 percent of the population needs humanitarian assistance and 90 percent live below the poverty line.

 Figures based on USA for The United Nations Refugee Agency

Click here to learn more about the lab of Dr. Petra Wilder-Smith.

 

 

 

 

 

https://bli.uci.edu/wp-content/uploads/2025/04/Takesh-Web-2.png 1080 1920 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-11-14 14:49:232025-04-14 14:55:10Resilience leads to better outcomes

A trick of light: UC Irvine researchers turn silicon into direct bandgap semiconductor

November 5, 2024/ News /by Gabrielle Comfort

Discovery enables manufacturing of ultrathin solar panels, advanced optoelectronics

Irvine, Calif., Oct. 31, 2024 — By creating a new way for light and matter to interact, researchers at the University of California, Irvine have enabled the manufacturing of ultrathin silicon solar cells that could help spread the energy-converting technology to a vast range of applications, including thermoelectric clothing and onboard vehicle and device charging.

The development, subject of a paper recently published as the cover story in the journal ACS Nano, hinges on the UC Irvine researchers’ conversion of pure silicon from an indirect to a direct bandgap semiconductor through the way it interacts with light.

The UC Irvine team, in collaboration with scientists from Russia’s Kazan Federal University and Tel Aviv University, explored an innovative approach by conditioning the light rather than changing the material itself. They confined photons on sub-3-nanometer asperities near the bulk semiconductor, granting light a novel property – expanded momentum – that opens new interaction pathways between light and matter. By “decorating” the silicon surface, the researchers said, they achieved a boost in light absorption by orders of magnitude, along with a significant increase in device performance.

“In direct bandgap semiconductor materials, electrons transition from the valence band to the conduction band. This process requires only a change in energy; it’s an efficient transfer,” noted lead author Dmitry Fishman, UC Irvine adjunct professor of chemistry. “In indirect bandgap materials, like silicon, an additional component – a phonon – is needed to provide the electron the momentum necessary for the transition to occur. Since the likelihood of a photon, phonon and electron interacting at the same place and time is low, silicon’s optical properties are inherently weak.”

He said that as an indirect bandgap semiconductor, silicon’s poor optical properties limit the development of solar energy conversion, and optoelectronics in general, which is a drawback considering that silicon is the second-most abundant element in Earth’s crust and the foundation on which the world’s computer and electronics industries were built.

“Photons carry energy but almost no momentum, but if we change this narrative explained in textbooks and somehow give photons momentum, we can excite electrons without needing additional particles,” said co-author Eric Potma, UC Irvine professor of chemistry. “This reduces the interaction to just two particles, a photon and an electron, similar to what occurs in direct bandgap semiconductors, and increases light absorption by a factor of 10,000, completely transforming light-matter interaction without changing the chemistry of the material itself.”

Co-author Ara Apkarian, UC Irvine Distinguished Professor emeritus of chemistry, said: “This phenomenon fundamentally changes how light interacts with matter. Traditionally, textbooks teach us about so-called vertical optical transitions, where a material absorbs light with the photon changing only the electron’s energy state. However, momentum-enhanced photons can change both the energy and momentum states of electrons, unlocking new transition pathways we hadn’t considered before. Figuratively speaking, we can ‘tilt the textbook,’ as these photons enable diagonal transitions. This dramatically impacts a material’s ability to absorb or emit light.”

According to the researchers, the development creates an opportunity to exploit recent advances in semiconductor fabrication techniques at the sub-1.5-nanometer scale, which has the potential to affect photo-sensing and light-energy conversion technologies.

“With the escalating effects of climate change, it’s more urgent than ever to shift from fossil fuels to renewable energy. Solar energy is key in this transition, yet the commercial solar cells we rely on are falling short,” Potma said. “Silicon’s poor ability to absorb light means that these cells require thick layers – almost 200 micrometers of pure crystalline material – to effectively capture sunlight. This not only drives up production costs but also limits efficiency due to increased charge carrier recombination. The thin-film solar cells that are one step closer to reality due to our research are widely seen as the solution to these challenges.”

Other co-authors on this study included Jovany Merham and Aleksey Noskov of UC Irvine; Kazan Federal University researchers Elina Battalova and Sergey Kharintsev; and Tel Aviv University investigators Liat Katrivas and Alexander Kotlyar. The project received financial support from the Chan Zuckerberg Initiative.

About UC Irvine’s Brilliant Future campaign: Publicly launched on Oct. 4, 2019, the Brilliant Future campaign aims to raise awareness and support for the university. By engaging 75,000 alumni and garnering $2 billion in philanthropic investment, UC Irvine seeks to reach new heights of excellence in student success, health and wellness, research and more. The School of Physical Sciences plays a vital role in the success of the campaign. Learn more by visiting https://brilliantfuture.uci.edu/uci-school-of-physical-sciences.

About the University of California, Irvine: Founded in 1965, UC Irvine is a member of the prestigious Association of American Universities and is ranked among the nation’s top 10 public universities by U.S. News & World Report. The campus has produced five Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UC Irvine has more than 36,000 students and offers 224 degree programs. It’s located in one of the world’s safest and most economically vibrant communities and is Orange County’s second-largest employer, contributing $7 billion annually to the local economy and $8 billion statewide. For more on UC Irvine, visit www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus studio with a Comrex IP audio codec to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at https://news.uci.edu/media-resources.

Click here to read full article on UC Irvine News.

https://bli.uci.edu/wp-content/uploads/2024/11/Apkarian-Fishman-Potma-720x480-1.jpg 480 720 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-11-05 14:12:482024-11-05 14:14:24A trick of light: UC Irvine researchers turn silicon into direct bandgap semiconductor

Photodynamic Therapy Found to Reduce Rhytides, Improve Dyspigmentation

October 22, 2024/ News /by Gabrielle Comfort

Doug Brunk, Medscape

Photodynamic therapy (PDT) — a treatment most commonly thought of for field cancerization — is an effective tool for reducing rhytides and lentigines, results from a small prospective study showed.

“Our study helps capture and quantify a phenomenon that clinicians who use PDT in their practice have already noticed: Patients experience a visible improvement across several cosmetically important metrics including but not limited to fine lines, wrinkles, and skin tightness following PDT,” one of the study authors, Luke Horton, MD, a fourth-year dermatology resident at the University of California, Irvine, said in an interview following the annual meeting of the American Society for Dermatologic Surgery, where he presented the results during an oral abstract session.

For the study, 11 patients underwent a 120-minute incubation period with 17% 5-aminolevulinic acid over the face, followed by visible blue light PDT exposure for 16 minutes, to reduce rhytides. The researchers used a Vectra imaging system to capture three-dimensional images of the patients before the procedure and during the follow-up. Three dermatologists analyzed the pre-procedure and post-procedure images and used a validated five-point Merz wrinkle severity scale to grade various regions of the face including the forehead, glabella, lateral canthal rhytides, melolabial folds, nasolabial folds, and perioral rhytides.

They also used a five-point solar lentigines scale to evaluate the change in degree of pigmentation and quantity of age spots as well as the change in rhytid severity before and after PDT and the change in the seven-point Global Aesthetic Improvement Scale (GAIS) to gauge overall improvement of fine lines and wrinkles.

After a mean follow-up of 4.25 months, rhytid severity among the 11 patients was reduced by an average of 0.65 points on the Merz scale, with an SD of 0.20. Broken down by region, rhytid severity scores decreased by 0.2 points (SD, 0.42) for the forehead, 0.7 points (SD, 0.48) for the glabella and lateral canthal rhytides, 0.88 points (SD, 0.35) for the melolabial folds and perioral rhytides, and 0.8 points (SD, 0.42) for the nasolabial folds. (The researchers excluded ratings for the melolabial folds and perioral rhytides in two patients with beards.)

In other findings, solar lentigines grading showed an average reduction of 1 point (SD, 0.45), while the GAIS score improved by 1 or more for every patient, with an average of score of 1.45 (SD, 0.52), showing that some degree of improvement in facial rhytides was noted for all patients following PDT.

“The degree of improvement as measured by our independent physician graders was impressive and not far off from those reported with CO2 ablative laser,” Horton said. “Further, the effect was not isolated to actinic keratoses but extended to improved appearance of fine lines, some deep lines, and lentigines. Although we are not implying that PDT is superior to and should replace lasers or other energy-based devices, it does provide a real, measurable cosmetic benefit.”

Clinicians, he added, can use these findings “to counsel their patients when discussing field cancerization treatment options, especially for patients who may be hesitant to undergo PDT as it can be a painful therapy with a considerable downtime for some.”

Lawrence J. Green, MD, clinical professor of dermatology, The George Washington University, Washington, DC, who was asked to comment on the study results, said that the findings “shine more light on the long-standing off-label use of PDT for lessening signs of photoaging. Like studies done before it, I think this adds an additional benefit to discuss for those who are considering PDT treatment for their actinic keratoses.”

Horton acknowledged certain limitations of the study including its small sample size and the fact that physician graders were not blinded to which images were pre- and post-treatment, “which could introduce an element of bias in the data,” he said. “But this being an unfunded project born out of clinical observation, we hope to later expand its size. Furthermore, we invite other physicians to join us to better study these effects and to design protocols that minimize adverse effects and maximize clinical outcomes.”

His co-authors were Milan Hirpara; Sarah Choe; Joel Cohen, MD; and Natasha A. Mesinkovska, MD, PhD.

Click here to read full article on Medscape.

https://bli.uci.edu/wp-content/uploads/2024/10/Copy-of-Copy-of-Copy-of-Mesinkovska-PTD-Web.png 1080 1920 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-10-22 12:06:312024-10-30 13:24:39Photodynamic Therapy Found to Reduce Rhytides, Improve Dyspigmentation

UC Irvine grad student training program aims to broaden access to cardiovascular care

September 23, 2024/ News /by Gabrielle Comfort

New NSF-funded initiative emphasizes technological solutions to health disparities

Irvine, Calif., Sept. 23, 2024 — Recent medical and biotechnology advances have helped people suffering from cardiovascular disease, the leading cause of death in the United States, but new treatments have not been distributed evenly or equitably throughout society, according to researchers at the University of California, Irvine.

To help address this, the National Science Foundation has awarded an interdisciplinary team at UC Irvine $3 million to launch a Biomedical Engineering Social Science Training initiative for graduate students to develop a next-generation workforce. The program combines education in cardiovascular health, technology and equity with a strengthened commitment to broadening access to care to traditionally underserved communities.

“To take advantage of new data science-driven approaches and technologies such as wearable devices, we need a reimagined and redesigned cardiovascular healthcare ecosystem,” said principal investigator Naomi Chesler, UC Irvine professor of biomedical engineering. “This NSF BEST grant to UC Irvine will enable focused collaboration among biomedical engineers, public health experts, psychological and behavioral scientists, and community members in training a new cadre of professionals devoted to access and equity in cardiovascular health and healthcare.”

The BEST program will serve 30 to 40 students in UC Irvine’s Department of Biomedical Engineering; Department of Health, Society & Behavior; and Department of Psychological Science, with two years of funding provided to 15 doctoral students. Participants will engage in specialized courses, interdisciplinary workshops and a summer research internship. They will be taught to recognize, develop and use technological solutions to address cardiovascular health and healthcare disparities, according to Chesler.

Central to the initiative will be extensive engagement between students and community and industry partners to prepare them for careers in academia, government and commercial enterprises.

“Training will include an immersive research internship in a community care center where participants will experience firsthand the impact of healthcare inequities on California’s underserved populations,” Chesler said.

The NSF BEST program will introduce students to the concept of team science and provide skills training at multiple stages of each participant’s journey. Chesler said that outcomes will be rigorously studied and evaluated to perfect training in the knowledge, skills and values to collaboratively solve health inequities with technology.

Joining Chesler as co-principal investigators are Bernard Choi, professor of biomedical engineering; Jason Douglas, associate professor of health, society and behavior; Christine King, associate professor of teaching in biomedical engineering; and Dylan Roby, chair and professor of health, society and behavior.

Core participants include Jessica Borelli, professor of psychological science; Michelle Digman, associate professor and William J. Link Chair of Biomedical Engineering; Amir Rahmani, professor of nursing and computer science; and Maritza Salazar Campo, assistant professor of teaching in organization and management in The Paul Merage School of Business. The lead evaluator of the NSF BEST program is Margaret Schneider, evaluation director in UC Irvine’s Institute for Clinical and Translational Science.

UC Irvine’s Brilliant Future campaign: Publicly launched on Oct. 4, 2019, the Brilliant Future campaign aims to raise awareness and support for the university. By engaging 75,000 alumni and garnering $2 billion in philanthropic investment, UC Irvine seeks to reach new heights of excellence in student success, health and wellness, research and more. The Henry Samueli School of Engineering plays a vital role in the success of the campaign. Learn more by visiting https://brilliantfuture.uci.edu/the-henry-samueli-school-of-engineering.

About the University of California, Irvine: Founded in 1965, UC Irvine is a member of the prestigious Association of American Universities and is ranked among the nation’s top 10 public universities by U.S. News & World Report. The campus has produced five Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UC Irvine has more than 36,000 students and offers 224 degree programs. It’s located in one of the world’s safest and most economically vibrant communities and is Orange County’s second-largest employer, contributing $7 billion annually to the local economy and $8 billion statewide. For more on UC Irvine, visit www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus studio with a Comrex IP audio codec to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at https://news.uci.edu/media-resources.

Click here to read full press release.

https://bli.uci.edu/wp-content/uploads/2024/09/Choi-BEST-Web.png 1080 1920 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-09-23 15:16:312024-09-25 12:23:49UC Irvine grad student training program aims to broaden access to cardiovascular care

UC Irvine Anti-Cancer Challenge Funds Institute Investigators

September 10, 2024/ News /by Gabrielle Comfort

Anti-Cancer Challenge Funded Research

The Anti-Cancer Challenge advances the UC Irvine Chao Family Comprehensive Cancer Center’s research mission by funding pilot projects that help investigators generate crucial preliminary data for high impact research.

Since our first Anti-Cancer Challenge Pilot Project in 2017, we have witnessed the impact of innovative research in the effort to reduce the cancer burden in our community. The following videos are from our first cohort in 2016 of the Principal Investigators reflecting on the progress of their research.

Thanks to the generosity of Anti-Cancer Challenge participants and donors, the following UC Irvine Beckman Laser Institute & Medical Clinic investigators were awarded funds in support of their biotechnology, imaging and drug development cancer research projects:

2023 Anti-Cancer Challenge Awardees
Project Title: Enhancing the efficacy of radiation therapy by surgically targeted radiation-sensitizer loaded hydrogels: translation of in vitro results to a post-resection rat brain tumor model
Investigator: Hirschberg, Henry

2022 Anti-Cancer Challenge Awardees
Project Title: “Image-guided Precision Radiotherapy” Team Science Seed Grant
Xiang, Liangzhong

2020 Anti-Cancer Challenge Awardees
Project Title: Real-time dosimetric measurement for FLASH radiotherapy with acoustic emission
Investigator: Xiang, Liangzhong

2019 Anti-Cancer Challenge Awardees
Project Title: Pilot study for evaluating the multiphoton microscopy potential for non-invasive, early diagnosis of melanoma
Investigator: Kelly, Kristen

2018 Anti-Cancer Challenge Awardees
Project Title: Advancing oro-pharyngeal cancer screening and diagnosis to overcome disparities and improve control and outcomes
Investigator: Wilder-Smith, Petra

2017 Anti-Cancer Challenge Awardees
Project Title: RhoJ inhibitors – a novel treatment for early stage melanoma
Investigator: Ganesan, Anand

Click here for a list of all Anti-Cancer Challenge Awardees.

Click here to join the Institute Anti-Cancer Challenge BLI Photons in Motion team.

https://bli.uci.edu/wp-content/uploads/2024/09/Fundraiser_Cover_Photo4.png 785 2500 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-09-10 12:42:042024-09-10 12:51:37UC Irvine Anti-Cancer Challenge Funds Institute Investigators

Getting help for thyroid eye disease

September 5, 2024/ News /by Gabrielle Comfort

Thyroid eye disease is an autoimmune disorder that can wreak havoc on a patient’s vision and appearance, causing dryness, redness, double vision, difficulty closing eyelids and in some cases, a noticeable bulging of the eyes.

“Moderate to severe thyroid eye disease can also be socially stigmatizing, affecting patients beyond their clinical symptoms,” says Dr. Lilangi S. Ediriwickrema, a UCI Health ophthalmologist at the Gavin Herbert Eye Institute and an assistant professor in the UC Irvine School of Medicine’s Department of Ophthalmology.

Ediriwickrema, who specializes in oculofacial plastic surgery and neuro-ophthalmology, is part of an interdisciplinary team formed to treat patients with thyroid eye disease.

First to diagnose

While the disease most often affects individuals who are already experiencing an overactive thyroid, it sometimes appears in individuals with low or even normal thyroid levels — especially if they smoke. It’s not unusual for an ophthalmologist to be the first to diagnose a thyroid imbalance when a patient seeks care for dryness, vision problems and eyelid swelling.

At the eye institute, patients diagnosed with thyroid eye disease may be referred to the oculofacial plastic and orbital surgery team led by Dr. Jeremiah P. Tao. He and Ediriwickrema work closely with various specialists to determine the best treatment options, with the ultimate goal of preserving vision.

For some patients with thyroid eye disease, prescription medicine may offer relief and allow the condition to resolve itself. In certain cases, however, surgery is the most effective and efficient treatment.

“It’s important for patients to be seen by specialists who have all the tools in their toolbox to not only monitor their condition but also treat the disease,” explains Tao, a professor of ophthalmology at the medical school.

Surgical interventions

Patients with moderate to severe thyroid eye disease may undergo what is known as decompression surgery.

In this procedure, the goal is to create more space around the eye to accommodate the swelling that leads to bulging of the eye and, in some cases, vision loss. Typically, this involves removing some bone around the eye.

“Inflammation in the eye socket can cause an assortment of problems,” explains Tao. “Decompression surgery sometimes offers immediate relief and takes pressure off the optic nerve, thereby reducing the risk of permanent vision loss.”

Patients whose thyroid eye disease causes double vision may require strabismus surgery to adjust eye muscles to allow the eyes to move together again.

People with complications such as severe dry eye may need a cornea specialist to help manage their care.

Oculoplastic surgery by Tao or Ediriwickrema may be recommended for patients with eyelid retraction problems or to remove extra tissue and fat accumulation around the eye as a result of the disease.

Evolving therapies

Both eye surgeons are optimistic that new therapeutic options will emerge to provide customized, multidisciplinary care for thyroid eye disease.

With funding from the National Institutes of Health, Ediriwickrema is studying how the inflammatory condition affects blood vessels and other tissue around the eye.

“The treatment landscape is continually evolving,” she says. “We hope that in the next 10 to 20 years we can offer patients even more options to manage this disease.”

Related stories

  • Eyes are window to the brain ›
  • Harnessing AI to revolutionize eye care for patients ›
  • Ophthalmologist Dr. Marjan Farid recognized for eye care innovations ›
  • Dry eyes: Relief is in sight ›

Read more at UCI Health Live Well.

https://bli.uci.edu/wp-content/uploads/2024/10/Copy-of-Lilangi-thyroid-PP.png 1080 1920 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-09-05 11:28:082024-10-22 11:35:24Getting help for thyroid eye disease

Optical coherence tomography has potential to treat port-wine birthmarks

September 4, 2024/ News /by Gabrielle Comfort

Collaboration needed to advance technology for use in patient care

A new study led by UC Irvine researchers found that while optical coherence tomography (OCT) could potentially guide port-wine birthmark treatment, the technology has a long way to go before it can be used in patient care.

Port-wine birthmarks are reddish-purple skin discolorations caused by a concentration of blood vessels. Using OCT, researchers measured the variability in blood vessel characteristics within 15 individual birthmarks on 10 patients, ranging from ages 8 to 72.

UCI Health dermatologist Dr. Kristen M. Kelly, corresponding author of the study, spoke to Healio about the findings.

“There is very wide variability in the number of vessels and in the size of vessels in port-wine birthmarks. I have to say, the degree of variability surprised me. We saw some port-wine birthmarks with vessels that were the size of what we would see in uninvolved skin and then there were ones where it was very dilated.”

The variability in vessel size means that numerous measurements would be required for treatment, making OCT a time-consuming option at the moment. Kelly says the best solution would be a tool that could rapidly and automatically measure vessels and select the appropriate laser settings.

“My hope really is that ultimately, we’ll use [OCT] to be able to guide treatments. But it will be tricky. It requires engineers and clinicians, patients and scientists all working together to be able to optimize this in a way that will be most helpful to patients.”

Kelly is a dermatologist who sees patients at UCI Health Dermatology Services and the Beckman Laser Institute & Medical Clinic. She is also a professor and chair of the Department of Dermatology in the UC Irvine School of Medicine.

Repeatedly named a Physician of Excellence by the Orange County Medical Association, she has decades of experience using lasers to treat vascular birthmarks, scars and other dermatologic conditions. Kelly specializes in cutaneous vascular lesions, skin cancer and other skin conditions, including acne and sun damage, and is a leader in the use of imaging technologies to accurately diagnose skin cancer. She is the author or co-author of more than 100 publications and book chapters.

Read more

  • Healio: Optical coherence tomography shows variability in port wine birthmark density, size ›
  • Following in dad’s footsteps ›
  • UC Irvine researcher creates camera to detect oral cancers ›
  • Breakthroughs offer hope for vitiligo patients ›

Click here to read more on UCI Health News.

https://bli.uci.edu/wp-content/uploads/2024/10/Copy-of-KK-OCT-PP.png 1080 1920 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-09-04 12:46:472024-10-17 12:55:28Optical coherence tomography has potential to treat port-wine birthmarks

UCI Researchers Awarded NSF Grant to Develop Critical Education Model to Address Cardiovascular Health Technology and Equity

August 22, 2024/ News /by Gabrielle Comfort
Cardiovascular disease is the leading cause of death nationwide. Unequal care and access to care for patients with cardiovascular disease is a critical national problem. Innovative engineering approaches, wearable devices and technology-enabled data mining have unrealized promise in both advancing care and improving access and equity. To take advantage of these approaches and technologies, workforce training must be reconsidered and redesigned.

Drs. Naomi Chesler, Dylan Roby, Jason Douglas, Bernard Choi and Christine King recently received a National Science Foundation (NSF) Research Traineeship (NRT) Integrated Biomedical Engineering Social Science Training (BEST) award in support from the Edwards Lifesciences Foundation to create a new graduate education model.  The model will unite biomedical engineers, behavioral scientists and psychological scientists to develop a next generation workforce that will be able to solve problems at the intersection of cardiovascular health, technology and equity.

Through interdisciplinary workshops, courses and a summer research internship, trainees will learn to recognize, develop and use technological solutions to increase access to and equity in cardiovascular health and healthcare. The program will serve 30 to 40 students from the departments of biomedical engineering, health, society and behavior and psychological sciences with two years of funding provided to 15 doctoral students. The convergent training in biomedical engineering and social sciences and engagement with community and industry partners will prepare the trainees for careers, in which they transform practices in industry, government and academia.

Participants will receive interdisciplinary training in social determinants of health, engineering design, and best practices in collaboration and scientific mentoring. Moreover, training will include a unique immersive research internship in a community care center to ensure that those most affected by lack of access and inequities are engaged in finding solutions.

The research theme of using technology to advance cardiovascular health, healthcare and healthcare access and equity will serve as the basis for meaningful interdisciplinary collaboration. The workforce trained through this NRT program will be able to use new and existing technologies to understand the root causes of cardiovascular health disparities, develop tools and systems that improve cardiovascular health and healthcare and study the individual, local and national barriers to acceptance of novel technologies for improved cardiovascular health and healthcare.

The program will introduce participants to team science and will provide skill training at multiple stages of each trainee’s participation in the program to support continued development of team-based approaches to problem solving. The project outcomes will be a demonstrated, well-evaluated model for transformative graduate training that is effective in developing trainees with the knowledge, skills and values to collaboratively solve health inequities with technology. Finally, a science-of-collaboration study conducted throughout the NRT project will explore the dynamics and efficacy of strategies designed to promote interdisciplinary collaboration by faculty and trainees in the program.

https://bli.uci.edu/wp-content/uploads/2024/08/Copy-of-Daily-Show-Web-1.png 1080 1920 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-08-22 16:28:362024-08-22 16:28:39UCI Researchers Awarded NSF Grant to Develop Critical Education Model to Address Cardiovascular Health Technology and Equity

Could Cognitive Tests Save America From Gerontocracy? | The Daily Show

August 15, 2024/ News /by Gabrielle Comfort

America’s democracy may not be the strongest, but it is the oldest! Grace Kuhlenschmidt explores the drawbacks of having a gerontocracy by chatting with UC Irvine neuropolitics researcher Mark Fisher, who explains how the brain deteriorates and what’s really covered on a cognitive test. Plus, she visits Congressman Maxwell Frost for a younger politician’s perspective.

Click here to view on the The Daily Show YouTube channel.

https://bli.uci.edu/wp-content/uploads/2024/08/Copy-of-Copy-of-Copy-of-Daily-Show-PP.png 1080 1920 Gabrielle Comfort https://www.bli.uci.edu/wp-content/uploads/2017/09/white_transparent-1.png Gabrielle Comfort2024-08-15 15:19:562024-08-28 15:00:18Could Cognitive Tests Save America From Gerontocracy? | The Daily Show
Page 8 of 32«‹678910›»

Categories

  • News
FOLLOW US ON SOCIAL MEDIA
  • X_icon
  • Facebook
  • LinkedIn
  • Youtube
  • Instagram
  • Support BLIMC❤️
  • Contact US
  • For Staff
Scroll to top